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STATISTICAL NORMALIZATION METHODS IN
INTERPERSONAL AND INTERTHEORETIC COMPARISONS*

For a long time, economists and philosophers have puzzled
over the problem of interpersonal comparisons of utility.1 As
economists typically use the term, utility is a numerical repre-

sentation of an individual’s preference ordering. If those preferences
satisfy the von Neumann-Morgenstern axioms, then her preferences
may be represented by an interval scale measurable utility function.
However, as such the unit of utility for each individual is arbitrary:
from individuals’ utility functions alone, there is therefore no mean-
ing to the claim that the difference in utility between coffee and tea
for Alice is twice as great as the difference in utility between beer and
vodka for Bob, or for any claim that makes comparisons of differences
in utility between two or more individuals.

Yet it seems that we very often can make comparisons of preference-
strength between people. And if we wish to endorse an aggregative
theory like utilitarianism or prioritarianism or egalitarianism, com-
bined with a preference-satisfaction account of well-being, then we
need to be able to make such comparisons.

More recently, a formally analogous problem has appeared in dis-
cussions of normative uncertainty. The most widely suggested method
for taking normative uncertainty into account in our decision-

* We wish to thank Stuart Armstrong, Hilary Greaves, Stefan Riedener, Bastian Stern,
Christian Tarsney, and Aron Vallinder for helpful discussions and comments. We are
especially grateful to Max Daniel for painstakingly checking the proofs and suggest-
ing several important improvements. This work has received funding from the Eu-
ropean Research Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 669751), and from the Leverhulme Trust
(RPG-2014-064).

1 See Ken Binmore, “Interpersonal Comparison of Utility,” in Don Ross and Harold
Kincaid, eds., The Oxford Handbook of Philosophy of Economics (Oxford: Oxford University
Press, 2009), pp. 540–59, for an overview.
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making is maximize expected choice-worthiness (MEC), where the “choice-
worthiness” of an option represents the strength of reasons one has to
choose an option, according to an individual normative theory. This
view has been defended by Ted Lockhart, William MacAskill, Toby
Ord, Jacob Ross, Andrew Sepielli, and Ralph Wedgwood.2

However, MEC faces a serious problem. Maximizing expected
choice-worthiness requires there to be a fact about how the difference
in choice-worthiness between two options, according to one theory,
compares with the difference in choice-worthiness between those two
options, according to every other theory in which the decision-maker
has credence. But how can this be done? For example, according to
average utilitarianism, it is wrong to halve average well-being in or-
der to quadruple population size; according to total utilitarianism, it
is wrong not to do so. But is halving average well-being in order to
quadruple population more wrong, according to average utilitarian-
ism, than failing to do so is wrong according to total utilitarianism?
And, in the absence of an obvious answer, how could we even begin
to go about answering this question?3 Several philosophers have sug-
gested either that intertheoretic comparisons are never possible4 or
that they are almost never possible.5 This has come to be known as the
problem of intertheoretic comparisons.

2 Ted Lockhart, Moral Uncertainty and Its Consequences (New York: Oxford University
Press, 2000); Jacob Ross, “Rejecting Ethical Deflationism,” Ethics, cxvi (July 2006):
742–68; Andrew Sepielli, “What to Do When You Don’t Know What to Do,” in Russ
Shafer-Landau, ed., Oxford Studies in Metaethics, Volume 4 (New York: Oxford University
Press, 2009), pp. 5–28; Ralph Wedgwood, “Akrasia and Uncertainty,” Organon F, xx,
4 (2013): 484–506; and William MacAskill and Toby Ord, “Why Maximize Expected
Choice-Worthiness?,” Noûs (forthcoming). It has also been referred to as “maximizing
expected value,” “maximizing expected rightness,” and “minimizing expected wrong-
ness,” but it is clear that all authors are referring to approximately the same concept.

3 For arguments that average and total utilitarianism must be incomparable, see John
Broome, Climate Matters: Ethics in a Warming World (New York: W. W. Norton & Com-
pany, 2012), p. 185; and Brian Hedden, “Does MITE Make Right?,” in Russ Shafer-
Landau, ed., Oxford Studies in Metaethics, Volume 11 (New York: Oxford University Press,
2016), pp. 102–28.

4 James L. Hudson, “Subjectivization in Ethics,” American Philosophical Quarterly, xxvi,
3 (July 1989): 221–29; Edward J. Gracely, “On the Noncomparability of Judgments
Made by Different Ethical Theories,” Metaphilosophy, xxvii, 3 (July 1996): 327–32; and
Johan E. Gustafsson and Olle Torpman, “In Defence of My favorite Theory,” Pacific
Philosophical Quarterly, xcv, 2 (June 2014): 159–74.

5 John Broome, “The Most Important Thing about Climate Change,” in Jonathan
Boston, Andrew Bradstock, and David Eng, eds., Public Policy: Why Ethics Matters, (Can-
berra: ANU E Press, 2010), pp. 101–16; and Broome, Climate Matters, op. cit., p. 122.
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In this article we introduce a class of potential solutions to both of
these problems,6 which we call statistical normalization methods. Normal-
ization methods because they are ways of placing different utility func-
tions or choice-worthiness functions on a common scale. Statistical be-
cause they normalize different utility functions or choice-worthiness
functions based on their statistical properties, such as their range, or
mean, or variance.

In this article we introduce some novel statistical normalization
methods, and tentatively argue that one method, variance normaliza-
tion, is superior to all other statistical normalization methods, includ-
ing those that have been proposed in the literature.

Though we believe that the arguments we give in this article will
be relevant to both interpersonal comparisons and to intertheoretic
comparisons, for reasons of focus we will concentrate our attention on
the application of statistical normalization methods to intertheoretic
comparisons in the context of normative uncertainty.

The structure of this article is as follows. In section i, we in-
troduce the framework within which we operate. In section ii, we
introduce the class of statistical normalization methods, including
three novel accounts: variance normalization, mean absolute devia-
tion from the median (MADAM) normalization, and mean absolute
difference (MD) normalization. In section iii, we consider specific ex-
amples and see how different statistical normalization methods fare,
arguing that three accounts that have been proposed in the litera-
ture fail, whereas variance, MADAM, and MD do better. In section
iv, we give the main argument of our paper: two approaches to for-
mally specifying the “principle of equal say” and axiomatizations of
various normalization methods given those specifications. On the first
approach, we show that variance normalization, range normalization,
and MADAM normalization can be axiomatized under reasonable as-
sumptions. On the second approach, we show that variance normal-
ization and MD normalization can be axiomatized under reasonable
assumptions. Insofar as only variance normalization can be axioma-
tized using reasonable assumptions in both cases, and that in both

6 More speculatively, it is possible that our account could also be used as a way to
aggregate incommensurable goods. It is possible that some goods might be incom-
mensurable in value, yet often we still need to make decisions even in the face of that
incommensurability. Perhaps, for example, a government needs to decide whether to
fund a number of economic development programs that would be positive in terms of
improvements to people’s well-being, but negative in terms of environmental impact.
The accounts we suggest may be a way of normalizing the different value functions
(such as welfarist value and environmental value) such that a decision can be made
and each value is given equal consideration.
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cases variance normalization results from the most natural choice of
assumptions, we tentatively conclude that it is the best statistical nor-
malization method.

i. our framework

We can now introduce the framework within which we work as fol-
lows. A decision-situation consists of a decision-maker, a time, and a
set of options. A decision-maker is an actor who faces sets of options
and must choose between them. An option is a proposition that the
decision-maker has the power to make true at a time. The decision-
maker has a credence function over propositions.7 We note that the
decision-maker’s credence function also assigns credences to proposi-
tions concerning which choice situations she could face, and to which
options she would choose in each choice situation.

Where we depart from standard decision theory is that we allow
the decision-maker’s credence function to roam over both empiri-
cal propositions and normative propositions, where normative propo-
sitions concern the choice-worthiness of options in decision situa-
tions.8 Normative propositions can be specific normative claims, such
as ‘abortion is wrong’ or ‘eating meat is permissible’, or claims about
moral theories, such as ‘utilitarianism is true’. In what follows, we will
consider situations where the decision-maker has credence only in
complete normative theories, which we define as propositions that
give a choice-worthiness value for every possible option in every pos-
sible choice-situation.

We acknowledge that this is an unrealistic assumption for real-life
decision-makers, who will typically think in terms of credences in spe-
cific normative claims rather than complete normative theories. How-
ever, in order to ultimately make sense of the choice-worthiness of

7 Where a credence function is a function from propositions to real numbers in the
interval [0, 1], which satisfies the Kolmogorov probability axioms, and is such that, for
any set of disjoint and mutually exhaustive propositions, the sum of credences across
those propositions equals 1. We assume precise credences for simplicity’s sake in this
article, but everything we say could be made to work if, as is plausible, the decision-
maker’s credences are imprecise. One might worry that, if non-cognitivism is true,
then one cannot make sense of credences over normative theories. This has been a
matter of some debate (see Michael Smith, “Evaluation, Uncertainty and Motivation,”
Ethical Theory and Moral Practice, v, 3 (September 2002): 305–20; Krister Bykvist and
Jonas Olson, “Expressivism and Moral Certitude,” The Philosophical Quarterly, lix, 235
(April 2009): 202–15; Andrew Sepielli, “Normative Uncertainty for Non-Cognitivists,”
Philosophical Studies, clx, 2 (September 2012): 191–207; and Krister Bykvist and Jonas
Olson, “Against the Being For Account of Normative Certitude,” Journal of Ethics and
Social Philosophy, vi, 2 (July 2012): 1–8), so we shall sidestep this issue by assuming that
cognitivism is true.

8 We thank an anonymous referee for this journal for helping us to clarify this.
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an action, conditional on some specific normative claim, we need to
be able to make sense of the choice-worthiness of that option on all
ways in which that specific normative claim could be true; that is, we
need to be able to make sense of the average choice-worthiness of
those complete theories on which the specific normative claim is true.
So we regard the question of how choice-worthiness compares across
complete theories as the bedrock question to address.

By “choice-worthiness” we mean the net strength of reasons that a
decision-maker has in favor of choosing an option. Though “choice-
worthiness” is a term of art, it clearly refers to a genuine concept: for
example, it makes sense to say that, though one has reason against
lying and reason against murdering, one has much stronger reason
against murdering.9 That is, if one can choose between a permissible
option, lying, and murdering, the difference in choice-worthiness be-
tween a permissible option and murdering is much larger than that
between the permissible option and lying. Though philosophers in
this literature have sometimes chosen to focus on moral uncertainty,
we understand choice-worthiness as representing the strength of rea-
sons in favor of a certain option, all things considered. Prudential rea-
sons, aesthetic reasons, and so forth are all taken into account in a
normative theory’s choice-worthiness ordering.10

We speak of choice-worthiness functions, which are numerical repre-
sentations of a theory’s choice-worthiness ordering. In this article
we assume that choice-worthiness is cardinally measurable. That is,
we assume that, whatever normative propositions are true, choice-
worthiness can be represented using numbers such that statements
like the following are meaningful: ‘the difference in choice-worthiness
between A and B is k times as great as the difference in choice-
worthiness between C and D’.11

In this article we are interested in the idea that decision-makers
should maximize expected choice-worthiness (MEC), where the expected
choice-worthiness of an option A is the sum, across all theories Ti ,
of the decision-maker’s credence in Ti multiplied by the choice-
worthiness of A given Ti .

9 This works even if you believe that all wrong acts are equally wrong, so long as you
think that other people are at least coherent when they deny this.

10 In what follows, we will assume that the decision-maker’s credence in options is
independent of their credence in theories. We thank an anonymous reviewer for this
journal for noting that we need to make this assumption.

11 Of course, real-life decision-makers will also have credence in the idea that choice-
worthiness is merely ordinally measurable. For work exploring what to do in such a
situation, see William MacAskill, “Normative Uncertainty as a Voting Problem,” Mind,
cxxv, 500 (October 2016): 967–1004.
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MEC is sensitive to both the credences that the decision-maker has
in different normative theories and the amounts of choice-worthiness
at stake in the decision-situation according to the different theories.
So in order to apply MEC, you need to be able to compare choice-
worthiness across different first-order normative theories.12 But it has
been asserted by several philosophers that such intertheoretic com-
parisons are either always or nearly always impossible.13 Those philoso-
phers who believe intertheoretic comparisons to be always or nearly
always impossible have taken this to be a strong reason to reject MEC.

ii. statistical normalization methods

A normalization method is an account of how to simultaneously choose
choice-worthiness functions to represent different normative theories
so that they all lie on a common scale—that is, just what is needed to
apply MEC. In what follows, we restrict our attention to what we call
statistical normalization methods: that is, those methods that place dif-
ferent normative theories on a common scale by treating some statisti-
cal property of a choice-worthiness function as being of the same mag-
nitude across all normative theories. To our knowledge, only three sta-
tistical normalization methods have been proposed in the literature.

The first is known as the ‘zero-one’ rule in the literature on in-
terpersonal utility comparisons: one normalizes different utility func-
tions such that the maximal and minimal utility on all utility functions
are the same.14 In the normative uncertainty literature, the analogous
rule was suggested by Ted Lockhart, who called it the Principle of
Equity among Moral Theories (PEMT):

The maximum degrees of moral rightness of all possible actions in a
situation according to competing moral theories should be considered

12 Technically, the thing that needs to be compared between theories is the dif-
ference in choice-worthiness between options, rather than absolute levels of choice-
worthiness.

13 Hudson, “Subjectivization in Ethics,” op. cit.; Gracely, “On the Noncomparability of
Judgments Made by Different Ethical Theories,” op. cit.; and Gustafsson and Torpman,
“In Defence of My Favorite Theory,” op. cit. Broome, Climate Matters, op. cit., p. 185,
for example, says the following: “We then encounter the fundamental difficulty. Each
different theory will value the change in population according to its own units of value,
and those units may be incomparable with one another. . . . Most theories of value will
be incomparable in this way. Expected value theory is therefore rarely able to help with
uncertainty about value.”

14 Daniel M. Hausman, “The Impossibility of Interpersonal Utility Comparisons,”
Mind, civ, 415 (July 1995): 473–90, argues that the zero-one rule is the only way that one
can make interpersonal comparisons of utility when utility is understood as a numerical
representation of preference strength. In what follows, we show that this is clearly not
the case.
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equal. The minimum degrees of moral rightness of possible actions in a
situation according to competing theories should be considered equal
unless all possible actions are equally right according to one of the the-
ories (in which case all of the actions should be considered to be maxi-
mally right according to that theory).15

The other two proposals we know of have been made in the context
of arguing against the zero-one rule or the PEMT. Here is Amartya
Sen arguing against the zero-one rule:

It may be argued that some systems, e.g., assigning in each person’s scale
the value 0 to the worst alternative and the value 1 to his best alterna-
tive are interpersonally “fair” but such an argument is dubious. First,
there are other systems with comparable symmetry, e.g., the system we
discussed earlier of assigning 0 to the worst alternative and the value 1
to the sum of utilities from all alternatives.16

As long as the number of options under consideration is the same
across all utility functions, Sen’s proposal is formally identical to nor-
malizing all utility functions at the distance between the mean utility
and the minimum utility.

Here is Andrew Sepielli arguing against the PEMT:

Lockhart’s proposal seems arbitrary. Why equalize the maximum and
minimum value, rather than, say, the mean value and the maximum
value?17

Noting that they each normalize at some statistical properties of a
utility or choice-worthiness function, we can refer to these three pro-
posals as range, max-mean, and mean-min normalization.

In addition to these, we propose three novel normalization meth-
ods. (We introduce these and not others because we will ultimately
show that there are natural sets of axioms that are only satisfied
by these theories.) First, variance normalization, which treats the vari-
ance of the choice-worthiness of options as the same across all the-
ories.18 Second, mean absolute deviation around the median normaliza-
tion (MADAM), which treats the mean absolute difference in choice-
worthiness between every option and the median option as being

15 Lockhart, Moral Uncertainty and Its Consequences, op. cit., p. 84.
16 Amartya K. Sen, Collective Choice and Social Welfare (San Francisco: Holden-Day,

1970), p. 98.
17 Andrew Sepielli, “Moral Uncertainty and the Principle of Equity among Moral

Theories,” Philosophy and Phenomenological Research, lxxxvi, 3 (May 2013): 580–89.
18 Variance is one of the standard measures of the spread of a distribution. It is

defined by the sum of the squared differences in choice-worthiness of each option
from the mean choice-worthiness. Variance is closely related to the standard deviation
(which is simply the square root of the variance) and an account of normalization based
on standard deviations would give exactly the same results as using variance.
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the same across all theories.19 Third, mean absolute difference normal-
ization (MD), which treats the average absolute difference between
any two options as the same across all theories. We note that, for
all of these statistical accounts, if a theory ranks all options as ex-
actly equally choice-worthy, then as a special case the normalization
method leaves the choice-worthiness function alone: the normalized
choice-worthiness function is just equal to the original one. (To not
treat it as a special case would involve dividing by zero; and since the
theory is indifferent between all options, how it is normalized does
not matter.)

In order to fully describe specific statistical accounts, we need to
make three clarifications.

First is the distinction between broad and narrow statistical ac-
counts.20 Narrow accounts normalize different theories within each
decision-situation. So, for example, narrow range normalization would,
for any decision-situation, treat the difference between the maximally
and minimally choice-worthy options as being the same for all the-
ories. This is what Lockhart proposes above. In contrast, broad ac-
counts normalize different theories across all decision-situations. On
our preferred way of making this precise, one would normalize at the
expected range (or variance, and so on) across all option sets that the
decision-maker might face, where the probabilities that go into the
expectation are the decision-maker’s fundamental prior probabilities
of facing different option sets.21

We think that there are two good reasons for preferring the broad
formulation. First, as we show in Appendix c, any narrow statisti-
cal normalization method generates cyclical recommendations across
decision-situations.22 That is, it can recommend doing A rather than
B when the choice is between A and B, then recommend doing B
rather than C when the choice is between B and C , but then recom-
mend doing C rather than A in a third decision-situation when the

19 This is a less common measure of the spread of a distribution than variance, but is
still used in some contexts.

20 The terminology of “broad” and “narrow” for this distinction comes from Amartya
Sen, Choice, Welfare and Measurement (Cambridge, MA: Harvard University Press, 1997),
p. 186.

21 An alternative way of making this precise would be to say that the account should
normalize different theories over the set of all conceivable options (as suggested by
Sepielli, “Moral Uncertainty and the Principle of Equity among Moral Theories,” op.
cit.). However, this suggestion runs into numerous problems, including that, on many
normative views, the choice-worthiness that a theory assigns to an option may depend
on what other options are available in the decision-situation.

22 A similar objection is made by Sepielli, but against the PEMT specifically; he does
not show that this poses a problem for all statistical normalization methods (ibid.).
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choice is between A and C . We take this to be a reason to reject the
narrow formulation, though not necessarily a decisive reason. Second,
and even more importantly, the broad formulation allows theories to
regard some decision-situations as higher stakes than others. It seems
clear that some decision-situations are higher stakes for some theo-
ries than for others: the decision about whether to tell a lie or tell
the truth might be low stakes for utilitarianism but of high stakes for
Kantianism. Narrow accounts do not allow for this.

Broad accounts have the problem that they would be significantly
harder to use in practice than the narrow formulation. On broad ac-
counts, one will often have very little idea how the choice-worthiness
of an option in a choice-situation compares across theories. One
would have to know at least approximately where a particular option
lies within the distribution of the choice-worthiness of all possible
options; but it seems that very often one will not know this. In con-
trast, on the narrow formulation, one only needs to know where in
the distribution of choice-worthiness of all options within a decision-
situation a particular option lies. This, presumably, would be much
easier to know. So a decision-maker would more often be able to actu-
ally use narrow methods, at least approximately, than broad methods.

However, we ultimately do not think that this worry gives us suf-
ficient reason to prefer narrow to broad accounts. We consider our
project to be giving a “criterion of rightness” concerning what is
correct to do under normative uncertainty, rather than a decision-
procedure (something that is meant to be useful in guiding agents).
So whether or not the criterion we give is practically useful for
decision-makers is not of the first importance: what rules decision-
makers should try to follow under normative uncertainty is a separate
further question.

The second clarification is with respect to measure. In order for the
accounts we develop to be well-specified, we must invoke a measure
over all possible options. Because options are propositions, and we
have already assumed that the decision-maker has a credence func-
tion, one might be inclined to simply use the decision-maker’s cre-
dence over options. However, this would have the counterintuitive
result that the measure over options changes as the decision-maker
makes subsequent decisions and learns more about the world, thereby
changing how different theories are normalized against each other.
Whether this is a problem will depend on one’s view on the purpose
of statistical accounts (see the third clarification below). But it seems
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to us that at least if normalization is making claims about how theo-
ries actually compare then the normalization between theories should
stay the same across all decision-situations.23

As an alternative to using the decision-maker’s credences over op-
tions, we propose we use the decision-maker’s fundamental prior cre-
dence distribution over options. This will not change over time. If
one is a subjective Bayesian, then it is simply a brute psychological
fact what this measure is; if one is an objective Bayesian, then there
are facts that constrain or specify what this measure should be. We
do not wish, however, to get into this debate here: all we note is that
the decision-maker will have some fundamental prior credence distri-
bution over options, and this is sufficient for us to be able to define
notions such as the variance of a choice-worthiness function.24

The third clarification is with respect to three distinct possible aims
of statistical accounts. Statistical accounts could be understood as (i)
making claims about how different theories actually compare; (ii)
making claims about how different theories ought to be normalized
for the purposes of maximizing expected choice-worthiness under
moral uncertainty (even though their true normalization might be

23 One might wonder whether this problem is really so bad: if the correct way to
normalize theories will vary from decision-maker to decision-maker (because decision-
makers have different priors), then why should we be concerned that the correct way to
normalize theories will vary from decision-situation to decision-situation? We acknowl-
edge that this could be a motivation for using the decision-maker’s posterior credence
function rather than their fundamental prior. However, we believe that the decision-
maker would face problems of dynamic choice: situations where, for example, they
should choose option A even though they know that, were they to do so, they would
wish that they had chosen option B (because the measure and therefore the normaliza-
tion has changed). These seem like additional significant problems for the posterior-
credence version of our account, which make us disinclined to endorse it. However, if
one wanted to use the posterior-credence version of our account, our arguments in the
rest of the paper would go through mutatis mutandis. We thank an anonymous reviewer
for this journal for raising this issue.

24 One might have the following worry: in order for variance normalization to be ap-
plicable to the case of interpersonal comparisons, it would require that all people have
the same fundamental prior. But unless we assume a strong form of objective Bayesian-
ism, which we do not want to do, then different people will have different priors. Our
response is that the issue that different people have different credence functions is a
general problem for issues of interpersonal aggregation: if each person’s preferences
are coherent, and there is disagreement between people about the probabilities of dif-
ferent states of nature, then social preferences cannot be both coherent and Paretian
(see John Broome, Weighing Goods: Equality, Uncertainty and Time (Oxford: Blackwell,
1991), p. 160). So it is already the case that, in order to engage in interpersonal ag-
gregation, one need to assume a fixed credence function, rather than one that varies
from person to person. The fact that we also have to rely on a fixed credence function
in order to use variance normalization therefore creates no additional problem for us.
We thank an anonymous reviewer for this journal for raising this issue.
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different); or (iii) giving us a way to set different theories on a com-
mon scale even though they are not genuinely comparable.

To see the difference, consider the problem of interpersonal com-
parisons again. First, one could claim, for example, that different in-
dividuals’ maximal and minimal utilities genuinely are the same. Sec-
ond, one could claim that, even though some people’s utility func-
tions have a wider range than others, for reasons of fairness one
should set all individuals’ maximal and minimal utilities to be the
same when aggregating different individuals’ preferences. For ex-
ample, perhaps one individual—a “utility monster”—has extremely
strong preferences. One might think it unfair that such an individ-
ual could have such an enormous sway over the social ordering, and
therefore wish to aggregate only a suitably dampened down normal-
ization of that individual’s utility function. Similarly, it might be the
case that there is some fact of the matter about how different nor-
mative theories compare that is not given by statistical normalization
methods. Perhaps, for example, all theories agree on the difference in
choice-worthiness between two options in some specific uncontrover-
sial decision. Even if so, statistical normalization methods may still be
useful: we may conclude that maximizing expected choice-worthiness
with respect to the true intertheoretic choice-worthiness comparisons
is not the right approach, perhaps because doing so would allow those
moral theories on which many decisions are extremely high stakes to
have too much sway. Instead, one might think that the right way to
act under normative uncertainty is to maximize variance-renormalized
expected choice-worthiness.

Third, one could claim that, even though there is no real fact of the
matter about how individuals’ utility functions compare, we can still
use range normalization to put those preferences on a common scale
for the purpose of coming to an equitable agreement between dif-
ferent individuals. This is one understanding, for example, of range
voting.

Our aim in this article is to assess the comparative merits of differ-
ent statistical normalization methods. It is not to argue in favor of sta-
tistical normalization methods over other approaches. We therefore
do not need to take a stand on which (if any) of the above three pur-
poses of the statistical account is correct (though this would of course
be a valuable further project).

iii. equal say

With these clarifications on board, we can turn to the methodology of
assessing different statistical normalization methods. Sen and Sepielli
both argue that there is no reason to choose between any of these
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normalization methods, and implicitly suggest that there is no non-
arbitrary normalization method. However, we do not think that this is
the case.

We can judge different statistical normalization methods by how
well they capture what we will call the principle of equal say: the idea
(vague for now) that the aim of a statistical normalization method is
to ensure that if different normative theories have equal credence,
then in some sense they should get equal influence over the decisions
of the decision-maker.

The motivation for the principle of equal say is as follows. In devel-
oping an account of decision-making under normative uncertainty,
we want to remain neutral on what the correct normative theory is:
we do not want to bias the outcome of the decision-making in favor of
some theories over others. We mean this in the sense that if we have
very high confidence in one normative theory Ti , then, no matter
what theory Ti is (whether it is utilitarian or contractualist or a form
of virtue ethics), our theory of decision-making under normative un-
certainty should not generally recommend actions which are very bad
under that normative theory.

Let us look at two specific cases of how this could go awry. First, con-
sider average and total utilitarianism, and suppose that the decision-
maker gives much higher credence to average than to total utilitari-
anism. Suppose that, in order to take an expectation over those theo-
ries, we choose to treat them as agreeing on the choice-worthiness of
options concerning worlds with only one person in them. If so, then
for almost all practical decisions involving variable populations, the
option with the highest expected choice-worthiness will be the op-
tion that total utilitarianism regards as most choice-worthy because,
for almost all real-life decisions (which involve a world with billions of
people), the stakes would be large for total utilitarianism, but tiny for
average utilitarianism. So even though the decision-maker has much
higher credence in average utilitarianism than in total utilitarianism,
she still almost always ought to act in accordance with total utilitarian-
ism. So it is plausible that, if we treat the theories in this way, we are
being partisan toward total utilitarianism.

In contrast, if we chose to treat the two theories as agreeing on the
choice-worthiness differences between options with worlds involving
some extremely large number of people (say 10100), then for almost
all real-life decisions, the option with the highest expected choice-
worthiness will be the same as the option that average utilitarianism
regards as most choice-worthy, even if the decision-maker had much
higher credence in total utilitarianism than in average utilitarianism.
This is because we are representing average utilitarianism as claiming
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that, for almost all decisions, the stakes are much higher than for to-
tal utilitarianism. In which case, it seems that we are being partisan to
average utilitarianism. What we really want is to have a way of normal-
izing such that each theory gets equal influence.

For a second way in which we could fail to give theories equal say,
suppose that the decision-maker has credence in two moral views: util-
itarianism, and a near-absolutist view on which one ought not to tell
a lie unless one can provide a benefit as great as saving 10100 lives,25

and that the decision-maker is 99.9999% sure in utilitarianism, but
has 0.0001% credence in the near-absolutist view. The “natural” way
of normalizing these two views is to suppose that they agree on the
value of saving lives, but that the near-absolutist view also supposes
that there are additional extremely strong reasons not to lie. If so,
then the expected choice-worthiness of lying in order to save lives
(even if that means saving billions of lives) is almost never greater
than the choice-worthiness of refraining from lying. This conclusion
seems perverse: it seems that “fanatical” moral views like the near-
absolutist view should not be able to so unduly influence what it is
rational for a decision-maker to do.

Against the idea that we should give different theories equal say,
one could argue that some theories are simply higher stakes in gen-
eral than other theories. Considerations of fairness, one might argue,
are relevant to issues about how to treat people: one can be unfair to a
person, but one cannot be unfair to a theory. Perhaps by saying that
one was being “unfair” to Kantianism, one could mean that one’s de-
gree of belief was too low in it. But one cannot be unfair to it insofar
as it “loses out” in the calculation of what it is appropriate to do. If a
theory considers a situation to have low stakes, we should presumably
represent it as such.

It may be the case that “equal say” has no bearing on how theo-
ries actually compare (though the authors of this paper are in dis-
agreement on this issue). But it seems clearly to have bearing on the
other two ways of understanding the purpose of statistical accounts
that we described in the previous section. In order to avoid “fanati-
cal” conclusions, where the expected choice-worthiness of one’s op-
tions is almost entirely determined by the choice-worthiness function
of a theory in which one has vanishingly small credence but which

25 We consider a near-absolutist view rather than an absolutist view because there are
difficulties in understanding absolutist views in terms of cardinal choice-worthiness.
For work on modeling absolutist views in decision-theoretic terms, see Mark Colyvan,
Damian Cox, and Katie Steele, “Modelling the Moral Dimension of Decisions,” Noûs,
xliv, 3 (September 2010): 503–29.
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claims that most decision-situations are enormously high stakes, one
might wish instead to renormalize the moral views in which one has
credence. Or, if one concludes that there is no ultimate fact of the
matter about how to make choice-worthiness comparisons across two
different theories, then one might conclude that, if we are to make
any rational choices at all, we need some principled way of placing
those theories on a common scale, and statistical normalization meth-
ods are the best account we have. For either of these two approaches,
we think that “equal say” is a promising way of adjudicating between
different statistical normalization methods.

In the rest of the article, we will use the principle of equal say to
assess different statistical normalization methods. We will first do so
informally, then develop two formal arguments in later sections.

iv. appeal to cases

To develop an intuitive sense of how different statistical normalization
methods can differ in how they apportion “say” between theories, and
why some accounts seem clearly inferior to others, we shall consider
some examples.

To help see the implications of different normalization methods,
we shall represent normative theories visually, where horizontal lines
represent different options and are connected by a vertical line, rep-
resenting the choice-worthiness function. The higher on the page
the option, the more choice-worthy the option, and the greater the
distance between two horizontal lines, the greater the difference in
choice-worthiness between those two options. These diagrams are ap-
proximately to scale.

First, let us consider the normalization methods mean-min (as sug-
gested by Sen) and max-mean (as suggested by Sepielli). We will con-
sider how they normalize two types of normative theories. The first
are Top-Heavy theories, according to which there are a small number
of outliers in choice-worthiness, but they are only in one direction:
there are just a small number of extremely un-choice-worthy possible
options. Any consequentialist theory that has a low upper bound on
value, but a very low lower bound on value, such that most options are
close to the upper bound and far away from the lower bound, would
count as a Top-Heavy moral theory. The second are Bottom-Heavy the-
ories, which are the inverse of Top-Heavy theories.

Because Top-Heavy and Bottom-Heavy theories are simply inver-
sions of each other, it seems very plausible, if we are to give theories
equal say, that one should treat the magnitudes of choice-worthiness
differences as the same according to both theories, just of opposite
sign. But this is not what we find for Sen and Sepielli’s suggestions.
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First let us consider max-mean. Figure 1 represents the theories
after normalizing.

Figure 1. Top-Heavy and Bottom-Heavy, after normalizing by max-mean.

Max-mean favors Top-Heavy theories and punishes Bottom-Heavy
theories. But these two theories are just inversions of each other, so
presumably ought to be treated symmetrically. Absent any case that
unlikely but extremely good outcomes should be treated differently
than unlikely but extremely bad outcomes (and we do not see such a
case), it appears that max-mean does not deal even-handedly between
these two classes of theories.

When we consider mean-min, we get exactly the same problem,
except that mean-min favors Bottom-Heavy over Top-Heavy (see Fig-
ure 2).

Figure 2. Top-Heavy and Bottom-Heavy, after normalizing by mean-min.

These examples therefore give us grounds for rejecting both max-
mean and mean-min.
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Next let us consider range normalization. To see the problems
with this account, let us consider two new classes of theory. The
first class is of Bipolar theories, which are theories where the choice-
worthiness clusters around two different levels, such that the differ-
ences in choice-worthiness when comparing two highly choice-worthy
options or two highly un-choice-worthy options are zero or tiny com-
pared to the difference in choice-worthiness when comparing a highly
choice-worthy option and a highly un-choice-worthy option. For ex-
ample, a view according to which violating rights is impermissible,
everything else is permissible, and where there is very little difference
in choice-worthiness between different impermissible options and dif-
ferent permissible options, would be a Bipolar theory.

We will call the second type of theory Outlier theories. According to
these theories, most options are roughly similar in choice-worthiness,
but there are some options that are extremely choice-worthy, and
some options that are extremely un-choice-worthy. A bounded conse-
quentialist theory with very high and very low bounds on value might
be like this: the differences in value between most options are about
the same, but there are some possible worlds which, though unlikely,
are very good indeed, and some other worlds which, though unlikely,
are very bad indeed.

If we used range normalization, the normalized versions of exam-
ples from the four classes of theory would look as in Figure 3.

Figure 3. Bipolar, Outlier, Top-Heavy, and Bottom-Heavy, after normalizing by
range.

For Top-Heavy and Bottom-Heavy, range normalization yields the
intuitively right result. Top-Heavy and Bottom-Heavy are simply inver-
sions of each other, so it seems very plausible that one should treat the
magnitudes of choice-worthiness differences as the same according to
both theories, just of opposite sign.
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For Bipolar and Outlier, however, range normalization does not
yield the right result. Because its scaling only cares about the maxi-
mal and minimal values of choice-worthiness, it is insensitive to how
choice-worthiness is distributed among options that are not maxi-
mally or minimally choice-worthy. As we will now show, this means
that Bipolar theories have much more power, relative to Outlier the-
ories, than they should.

Let us consider a concrete case. Suppose that Sophie is uncertain
between an absolutist moral theory and a form of utilitarianism that
has an upper limit of value of ten billion happy lives, and a lower
limit of ten billion lives of agony. She has 1% credence in the abso-
lutist theory, and 99% credence in bounded utilitarianism. If range
normalization is correct, then in almost every decision-situation she
faces she ought to side with the absolutist theory. Let us suppose she
is confronted with a murderer at her door, and she could lie in order
to save her family: an action required by utilitarianism, but absolutely
wrong according to the absolutist view. Given range normalization, it
is as wrong to lie, according to the absolutist view, as it is to force ten
billion people to live lives of agony, according to utilitarianism. So her
1% credence in the absolutist view means that she should not lie to
the murderer at the door. In fact, she should not lie even if her cre-
dence in the absolutist theory was as low as 0.000001%. That seems
incredible. Range normalization flagrantly fails to respect the princi-
ple of equal say in cases where some theories put almost all options
into just two categories.26 So this example gives us grounds to reject
range normalization.

What, though, of variance normalization, MADAM, and MD? If we
treat the variance of choice-worthiness as the same across all four the-
ories, they would be represented as in Figure 4.

If we treat the mean absolute difference as the same across all the-
ories, they would be represented approximately as in Figure 5.

If we treat the mean absolute distance from the median as the same
across all four theories, they would be represented approximately as
in Figure 6.

Variance, MADAM, and MD normalizations all do better than max-
mean and max-min insofar as they normalize Top-Heavy and Bottom-
Heavy in the same way. They also do better than range normalization
insofar as they make Bipolar’s range comparatively smaller than Out-
lier’s range, which is the result we wanted. So the consideration of
particular cases seems to motivate variance normalization, MADAM,
and MD over their rivals.

26 We thank Bastian Stern for initially suggesting this argument.
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Figure 4. Bipolar, Outlier, Top-Heavy, and Bottom-Heavy, after normalizing by vari-
ance.

Figure 5. Bipolar, Outlier, Top-Heavy, and Bottom-Heavy, after normalizing by
MD.

It is harder, however, to have clear intuitions about how to compare
variance, MADAM, and MD with respect to these examples. In com-
parison to variance or MD normalizations, MADAM gives compara-
tively less weight to Bipolar than to the other three theories; it also
gives slightly more weight to Outlier than to Top-Heavy and Bottom-
Heavy. MD and variance give very similar results, though in compari-
son to variance normalization, MD gives slightly more weight to Top-
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Figure 6. Bipolar, Outlier, Top-Heavy, and Bottom-Heavy, after normalizing by
MADAM.

Heavy and Bottom-Heavy theories compared to Outlier theories. In
our view, it is just not clear, intuitively, which are the correct results.

What is more, by its nature an appeal to cases argument can be sug-
gestive, but can hardly constitute a knockdown argument. Perhaps
there are other normalization methods that do as well as variance,
MADAM, and MD do on the cases above. Perhaps there are other
cases in which variance or MADAM or MD do worse than the other
methods we have mentioned. It would be nice to rely on more rigor-
ous arguments.

In the next section we shall suggest two approaches to making the
idea of equal say formally precise, though in each case with some lee-
way in how one exactly specifies the notion. On the first approach, we
are led to conclude that either variance or range or MADAM is the
normalization method that best captures the principle of equal say;
on the second approach, we are led to conclude that either variance
or MD is best. Let us now turn to these arguments.
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v. equal say as equal distance from the uniform theory

Consider a uniform choice-worthiness function—one that assigns the
same degree of choice-worthiness to all options. If any theory’s choice-
worthiness function were normalized to be essentially uniform before
applying MEC,27 then that theory would not affect the final decision.
Such a normalization would give that theory no “say.” We could mea-
sure how much “say” a theory has by how far away its normalized
choice-worthiness function is from the uniform choice-worthiness
function. Remember that by “say” we are thinking of the degree to
which the theory may influence the choice between options, for a
fixed degree of credence in that theory.

Imagine starting each theory off with a uniform choice-worthiness
function and an equal amount of credit, where this credit can be
spent on moving the choice-worthiness function away from the uni-
form function. Every move away from the uniform choice-worthiness
assignment increases the “say” of that theory, and uses up a propor-
tionate amount of credit. On this account, giving every theory equal
say means giving them an equal amount of starting credit. In this sec-
tion we will spell out this suggestion, explain the motivation for it,
and demonstrate that (for our normal notion of distance) variance
normalization is the only normalization method that gives every the-
ory equal say so understood.

To illustrate, let us begin by considering different theories that are
intertheoretically comparable—they have already been normalized in
some way, so there is a shared unit of choice-worthiness across them.
We will say that a completely uniform theory, according to which all
options are equally choice-worthy, gives all options choice-worthiness
0 (though we could have just as well have said it gives all options 17,
or any other number). Next, consider a theory, T1, which differs from
the uniform theory only insofar as its choice-worthiness function gives
one option, A, a different choice-worthiness, x. There are two ways in
which a theory T2 might have more say than T1. First, it could have
the same choice-worthiness ordering as T1, but its choice-worthiness
function could give A a higher numerical value (remembering that,
because we are talking about theories that are intertheoretically com-
parable, this is a meaningful difference between these two theories).
If it gave A a numerical value of 2x, so that the choice-worthiness dif-
ference between A and any other option is twice as great according to

27 If a theory is represented by a choice-worthiness function f , it is also represented by
0.1f , 0.01f , 0.001f , and so on. These limit to a uniform choice-worthiness function, and
if we go far enough down the sequence then the representative will be close enough to
uniform as to make no difference.
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T2 than according to T1, then T2 would have twice as much “say” as
T1. A second way in which a theory could have more “say” than T1 is
if it assigned non-zero numerical values to another option in addition
to A. Then it would have equal say with respect to A, but would have
a greater say with respect to the other options.

But what does “moving away” from the uniform theory mean? We
can take this idea beyond metaphor by thinking of choice-worthiness
functions geometrically. To see this, suppose (to begin with) that
there are only two possible options, A and B, and three theories, T1,
T2, and T3, whose choice-worthiness functions are represented by Ta-
ble 1.

T1 T2 T3

A −4 3 4

B 1 4 1

Table 1.

Using the choice-worthiness of A as the x-axis and the choice-
worthiness of B as the y-axis, we may represent this geometrically as
in Figure 7.

Figure 7.

Any point on this graph represents some choice-worthiness func-
tion and those corresponding to T1, T2, and T3 are marked. The diag-
onal line represents all the uniform choice-worthiness functions. The
dotted lines show the distance from each of T1, T2, and T3 to their
nearest uniform choice-worthiness function. These distances allow a
way of precisely defining “equal say.” Giving each theory equal say
means choosing a (normalized) choice-worthiness function for each
theory such that, for every choice-worthiness function, the distance
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from that choice-worthiness function to the nearest uniform choice-
worthiness function is the same.

It turns out that the distance from a choice-worthiness function to
the nearest uniform function is always equal to the standard devia-
tion of the distribution of choice-worthiness values it assigns to the
available options (see Appendix a for a proof). So treating all choice-
worthiness functions as having equal say means treating them as lying
at the same distance from the uniform function, which means treating
them such that they have the same standard deviation and thus the
same variance. Variance normalization is thus the unique normaliza-
tion method for preserving equal say on this understanding of equal
say.

We can now look at the geometric interpretation of normalizing
theories by their variance (see Figure 8).

Figure 8.

The dashed lines in this diagram represent all the choice-worthiness
functions that are a distance of 1 from the nearest uniform function.28

This means that they also have a standard deviation of 1 and hence
a variance of 1. In order to normalize each theory so that they have
the same amount of “say,” we move each theory to the closest point
on one of the dashed lines (the arrows show these moves). This cor-
responds to linearly rescaling all of the theory’s choice-worthiness val-
ues so that their variance is equal to 1, while keeping their means
unchanged. This does not change the ordering of the options by that
theory’s lights; it just compresses it or stretches it so that it has the
same variance as the others. One can then apply MEC to these nor-
malized choice-worthiness functions.

28 We could have chosen any non-zero value here; 1 is merely convenient.
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This all works in the same way for any finite number of options.29

A choice-worthiness function gives an assignment of a real number to
each option, so if there are n options a choice-worthiness function can
be represented as a collection of n real numbers. Just as pairs of real
numbers give us Cartesian coordinates in the plane, and triples give
us coordinates in three-dimensional space, so we can interpret this
collection as the coordinates of a point in n-dimensional Euclidean
space. We can then proceed the same way, looking at the distance
in this n-dimensional space from a choice-worthiness function to the
nearest uniform theory, equating this to “say,” and normalizing to
make the distances the same. Just as before, the distance corresponds
to the standard deviation, and so normalizing to equalize variance is
the unique way to provide equal say.30

While there is no need to normalize the means of the choice-
worthiness functions (it does not affect the MEC calculation, as we
are ultimately interested in comparing between options) it could be
convenient to normalize them all to zero, by adding or subtracting a
constant from each choice-worthiness function. If so, then the choice-
worthiness functions are in the familiar form of “standard scores” or
“z-scores” where the mean is zero and the unit is one standard de-
viation. These z-scores are commonly used in statistics as a way to
compare quantities that are not directly comparable, so it is particu-
larly interesting that our approach to intertheoretic choice-worthiness
comparisons for non-comparable theories could be summerized as
“compare them via their z-scores.”

This argument made an implicit assumption that the appropriate
way to measure distance between utility functions is the Euclidean
distance (that is, the l2 metric).31 What happens if we instead use one
of the other natural conceptions of distance, such as the l1 or l∞ met-
ric? Under a l1 metric, sizes are equal when theories are normalized
so that the average distance in choice-worthiness between a random

29 This argument applies only in the case where, in any decision-situation, there are
finitely many options, and makes an assumption of symmetry in the weight we attach
to each. This is the simplest case for intertheoretic value comparisons, and any method
should at least behave well in this base case. Note, however, that our argument applies
to all finite decision-situations, and so does not prevent us from considering what we
have called “broad” normalization methods across infinitely many decision-situations—
what is more, the aggregated set of options across all decision-situations may be infinite,
as long as within each single decision situation there are only finitely many options to
choose from.

30 Again, see Appendix a for details.
31 We thank an anonymous referee for this journal for pressing this issue.
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option (according to the measure over options) and the median op-
tion is equalized. That is, the above argument using the l1 metric sup-
ports the MADAM normalization. Under a l∞ metric one sets as equal
the distance between the best and worst option. That is, the above ar-
gument using the l∞ metric supports range normalization. We show
both of these results in Appendix a. (In both cases the broad for-
mulation would equalize the expectations of the respective quantities
across choice-situations.)

Euclidean distance is not obviously correct for this space, and we do
not think that this argument alone is enough to conclude in favor of
variance normalization. Rather, we think it suggests using a normal-
ization method corresponding to some natural notion of distance.
This rules out max-mean and mean-min. It does leave at least an in-
finite family of possibilities, based on the ln distance norms. Among
these, the three most naturally distinguished points are the three we
have just mentioned: l1 and l∞ are the ends of the spectrum, and the
l2 norm is unique among the whole spectrum in giving an isotropic
space, meaning that the geometry is particularly well-behaved by treat-
ing all directions equally. Mathematical taste might lead you to prefer
one of these over the others, but it is at least unclear. Still, it narrows
the space.

In the next section we shall look at a different style of argument
that, depending on the precise assumptions used, motivates either
variance normalization or MAD.

vi. equal say as equal expected choice-worthiness of voting

The previous argument cashed out the idea of “equal say” as “equal
distance from a uniform choice-worthiness function.” In our second
argument, we shall borrow a concept from voting theory: voting power.
An individual’s voting power is the a priori likelihood of her vote being
decisive in an election, given the assumption that all the possible ways
for other people to vote are equally likely. It is normally used for elec-
tions with just two candidates, but the concept is perfectly general.

We could extend this concept to flesh out “equal say.” A first chal-
lenge is that while voters all have just one vote, theories come with
different credences. We want theories with the same credence to have
the same voting power and for voting power to go up on average as
the credence increases.32 If we knew that all credences in theories

32 The qualification “on average” is needed as it is possible for a theory to get its way
all the time when it is given a credence that is slightly less than 1 and from that point
increases in credence will not improve its power. This is analogous to how a voting
block might have all the power with less than 100% of the votes.
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were multiples of 10%, we could regard this as an electorate with 10
people, and ask that the voting power of each was the same. If we
knew that the credences were all multiples of 1% we could similarly
treat this as an electorate of 100 people. But these are special cases.
For the general case, we propose instead to imagine asking that every
individual’s voting power is equal in the limit as we take increasingly
large electorates. And in the limit with larger electorates we could per-
fectly approximate the split of credences between the different theo-
ries. Hence we will look at the voting power of the first small (and
equally sized) amount of credence in each particular theory, and ask
what would make those the same.

In Appendix b, we provide a proof that the only normalization ag-
gregation method which gives equal voting power to all non-uniform
theories in this sense is MD.

However, a second challenge is that by a theory’s own lights it does
not just matter that one’s credence in it is decisive in determining
which option gets chosen, it matters how much better this chosen op-
tion is than the option that would have been chosen otherwise. Get-
ting its way in a decision about whether to prick someone with a pin
matters a lot less, for utilitarianism, than getting its way in a decision
about whether to let a million people die. If we are normalizing to
provide “equal say,” we should arguably take that into account as well.
Since theories come with a measure of this difference between the op-
tions (the choice-worthiness difference), and they use its expectation
when considering descriptive uncertainty, it is natural to use this here.
This means we should speak not just of the likelihood of being deci-
sive, but of the increase in expected choice-worthiness. This is not
done in normal analysis of voting power since it is usually assumed
that there is no access to information about how strong the prefer-
ences of the voters are. In our context, however, we have assumed
that we do know strengths of choice-worthiness on different theories.
We thus achieve “equal say” when from a position of complete uncer-
tainty about how our credence will be divided over different choice-
worthiness functions, an increase in our credence in a theory by a tiny
amount will increase the expected choice-worthiness of the decision
for that theory by the same degree regardless of which theory it was
whose credence was increased.

There is one final challenge for this approach. If each theory had
one canonical choice-worthiness function, this definition would work.
But since each theory is described by infinitely many different choice-
worthiness functions (positive affine transformations of each other),
we do not yet know which choice-worthiness function to use to repre-
sent each theory and so cannot come up with a unique value for the
“expected choice-worthiness.”
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However we can resolve this by considering that the normalization
used to choose an option in a decision-situation should be the same
normalization used to measure equal say in terms of this version of
voting power. This does not sound like a strong constraint, but it is
enough to let us prove that there is a unique normalization method
that satisfies it and equalizes voting power. In Appendix b, we prove
that variance normalization is the only normalization method that
can coherently satisfy this interpretation of equal say as equal impact-
adjusted voting power.

This second interpretation of voting power has given us a different
preferred normalization method. We think that it is more natural to
think of voting power in terms of both likelihood of success and value
of success if success is achieved, and hence we prefer the set-up of the
argument that gives variance normalization.

vii. conclusion

In this article we considered methods of normalizing different choice-
worthiness functions or utility functions with reference to statistical
properties of those functions. We first argued, by appeal to cases, that
those statistical normalization methods that have been proposed in
the literature—range, max-mean, and mean-min—are unsatisfactory
because they fail to give different theories equal say; in contrast, vari-
ance, MADAM, and MD seem to do well in the cases we considered.
We then showed that, if we understand “equal say” as distance from
the uniform theory, then—depending on one’s choice of metric—
range normalization, MADAM, or variance give all theories equal say.
Finally, we showed that, if we understand equal say as equal voting
power, then, depending on how one understands voting power, either
variance normalization or MD gives all theories equal say.

We note that, for both of the arguments we considered, variance
normalization is what results from what we think is the most natural
formulation of the argument, and that variance normalization is the
only account that has support from both forms of argument, rather
than just from one.

Given that two distinct lines of argument, in their most plausi-
ble form, motivate variance normalization, we conclude that variance
normalization is the uniquely best statistical normalization method.

appendix a. equal say as equal distance
from the uniform theory

In this section, we will often consider the space of all choice-worthiness
functions for a fixed set D of finitely many options, that is, the set
U = {f : D → R}. Note that by choosing an arbitrary numbering of
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the finitely many options in D we can identify this set with R
n, where

n is the number of options in D.33 We will freely make use of this
identification in our proofs.

Thus the propositions in this section are of the following type: “For
all finite D, the following statement is true about the associated space
U of choice-worthiness functions on D, where we tacitly identify U
with R

n.”

Proposition A.1. If there are finitely many options, then Euclidean dis-
tance from the uniform theory in the space of choice-worthiness func-
tions is equal to the standard deviation of the choice-worthiness func-
tion.

Proof. Let U denote the space of choice-worthiness functions on n op-
tions, equipped with Euclidean distance. The shortest path from any
point in this space to the line of uniform theories runs perpendicular
to that line. Given a point p = (p1, . . . , pn) ∈ U , we may replace it by
p′ = (p1 − m, . . . , pn − m), where m is the mean of p1, . . . , pn. Since p′ is
just a translation of p parallel to the line of uniform theories, it will lie
at the same distance from that line. Moreover, since the mean satisfies
m = 1

n

∑n
i=1 pi , we find that p′ by construction lies in the plane through

the origin {(x1, . . . , xn) |
∑

i xi = 0} which is perpendicular to the line
of uniform theories. The closest point to p′ on this line thus is the origin
(0, . . . , 0).

The Euclidean distance between these two points is (
∑

i(pi − m)2)1/2,
which is just the standard deviation σ(p′). Since the standard deviation
is invariant under translation, σ(p′) equals σ(p).

Thus to normalize the Euclidean distance from the uniform the-
ory one normalizes standard deviation, or, equivalently, the variance
σ2. (To see that normalizing the standard deviation σ is equivalent to
normalizing the variance σ2, note that both σ and σ2 are non-negative
real numbers, and that for such numbers x and y we have x = y if and
only if x2 = y2.)

Proposition A.2. If there are finitely many options, then the l1-distance
from the uniform theory is directly proportional to the mean absolute
deviation around the median for its choice-worthiness function.

Proof. Let U denote the space of choice-worthiness functions on n op-
tions, equipped with l1-distance. Given a point p = (p1, . . . , pn) ∈ U ,
and a point on the line of uniform theories q = (a, . . . , a), then the
l1-distance between p and q is

∑
i |pi − a|. This is minimized when an

33 Formally, any numbering is just a bijection φ : {1, . . . , n} ∼−→ D. It is routine to see
that this yields an isomorphism of vector spaces ψ : U ∼−→,Rn, f �→ (f (φ(i)))i=1,...n ,
where U is a vector space via point-wise operations.
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equal number of pi lie above a as lie below it34—which holds when a is
the median of the pi (and may also hold for some other values if the
median does not coincide with one of the pi—in this case there is not
a unique closest point). The distance to this point is equal to the sum
of the absolute deviation around the median. Since there are a fixed n
options, this sum is directly proportional to the mean absolute distance
around the median.

Thus to normalize the l1-distance from the uniform theory one nor-
malizes MADAM (mean absolute deviation around median). (This
follows immediately from x = y if and only if nx = ny for any real
numbers x, y, and n �= 0.)

Proposition A.3. If there are finitely many options, then the l∞-distance
from the uniform theory is directly proportional to the range of its
choice-worthiness function.

Proof. Let U denote the space of choice-worthiness functions on n op-
tions, equipped with l∞-distance. Given a point p = (p1, . . . , pn) ∈ U ,
and a point on the line of uniform theories q = (a, . . . , a), then the
l∞-distance between p and q is maxi |pi − a|. This is minimized when a
is half-way between the largest and smallest pi . In that case the distance
is equal to half the range of the pi . This is directly proportional to the
range.

Thus to normalize the l∞-distance from the uniform theory one
normalizes range.

appendix b. equal say as equal expected choice-worthiness
of voting

We will work in the following setting.

• O will denote a countable set containing all options between which
we might choose in any decision-situation. It will be treated as fixed
throughout.

• D = {finite subsets of O}, which we will interpret as the set of
admissible decision-situations. We interpret a member D ∈ D as
representing the decision between precisely the options A with
A ∈ D ⊂ O. For simplicity, we only consider decisions between
finitely many options.

34 To see the claim about what values of a minimize
∑

i |pi − a|, assume without loss
of generality that p1 ≤ · · · ≤ pn and consider the continuous map f : R → R, a �→∑

i |pi − a|. Clearly, we have maxp1≤a≤pn f (a) < mina/∈[p1,pn ] f (a). A minimum of f
in the interval [p1, pn] thus is a global minimum of f . Since the image of a compact
set under a continuous map is compact, the image of [p1, pn] under f is a compact
subset of R, which thus has a minimal element. It therefore suffices to show that for
any a ∈ [p1, pn] such that there are not as many pi below as above it the value f (a) is
not minimal, which is routine.
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• A (moral) theory T is an equivalence class of families of choice-
worthiness functions T = (TD)D∈D , where TD : D → R. Two families
T and T ′ represent the same theory T if and only if there is a con-
stant k > 0 such that ∀D ∈ D : T ′

D = kTD . For a fixed decision
situation D we will often identify the space of all choice-worthiness
functions TD : D → R with R

#D , where #D denotes the number of
options in D.

• A (statistical) normalization method N is a selection, for each theory
T, of one family of choice-worthiness functions T = N (T) repre-
senting that theory. We interpret the functions in N (T) for varying
theories T as having values on a common scale, such that it makes
sense to aggregate them by maximizing expected choice-worthiness
(MEC).

• P will denote a prior over decision-situations, that is a probability
measure on D (where we use the full power set as σ-algebra, which
works as D is countable).

• Q will denote a prior over normalized (!) theories, that is a proba-
bility measure on the space T =

∏
D∈D R

#D of families of choice-
worthiness functions. Since T is a product of uncountably infinite
sets this requires some elaboration. For each D, we equip R

#D with
the familiar σ-algebra of Lebesgue-measurable sets. We then get a
σ-algebra on T by taking the product σ-algebra.

Remark B.1. We suspect that our results and proofs essentially remain
valid for uncountable option sets O. However, this would require mod-
ifications to our exposition. For instance, the set of decision situations
D would then be uncountable as well, and so the choice of σ-algebra
would matter for which priors P are feasible. We would also need to
replace some sums with integrals.

We are interested in precise notions of

(i) the expected chance of voting being pivotal to the outcome, and
(ii) the expected choice-worthiness of voting (the choice-worthiness as

regarded by the theory, per unit of credence held in that theory),

but as mentioned in the main text this is dependent on the credences
held. To remove this dependence we look at the expected effect of
adding a very small level of credence in the theory, using the machin-
ery of derivatives to take the limit as the extra credence allocated goes
to zero.

First, consider a fixed decision-situation D. Our prior Q determines
a probability measure on the space R

#D of choice-worthiness func-
tions for this decision-situation. The expected value relative to that
probability measure is a choice-worthiness function SD that repre-
sents just how we would decide in this situation when using MEC to-
gether with the normalization method and credences implicit in Q .
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Now consider if we were to make a small change p in credence for
some family of normalized choice-worthiness functions T , adjusting
credence in all other families uniformly. We would then replace SD

with pTD + (1 − p)SD . We are interested in:

i. The probability (with respect to Q) that this replacement changes
the set of options with maximal choice-worthiness. Call this PT ,D(p).
Regarding it as a function of p, we calculate the derivative at 0: call
this gD(T ).

ii. The expected improvement in choice-worthiness of the chosen op-
tion, according to T . Call this ET ,D(p). We again look at the deriva-
tive at p = 0: call this fD(T ). It is expressed in units of choice-
worthiness according to T .

The fairness conditions we are interested in will be expressed in
terms of the expected value of these derivatives across all decision-
situations, assuming the latter are distributed according to P :

(1) g(T ) = ED∼P [gD(T )]
(2) f (T ) = ED∼P [fD(T )]

Remark B.2. Without assumptions on the priors P and Q , neither the
derivative gD(T ) nor the expectation g(T ) need exist, and similar for
fD(T ) and f (T ). For example:

(a) Consider the case that Q almost surely picks out a family of in-
different choice-worthiness functions. That is, with probability 1
we have SD(A) = SD(B) for all decision-situations D ∈ D and all
options A,B ∈ D. Pick some D, options A,B ∈ D, and choice-
worthiness functions T such that TD(A) �= TD(B). Then almost
surely any non-zero perturbation of SD in the direction of TD

changes the set of top options. That is, we have PT ,D(p) = 1 for
all p �= 0, but of course PT ,D(0) = 0. Thus, PT ,D(p) is not contin-
uous in p = 0, and in particular has no derivative in p = 0.

(b) Even if gD(T ) exists for all D ∈ D, its expectation across decision-
situations need not. To give an example, we will fix an arbitrary
numbering D = {Dn | n ∈ N}. It is easy to see that there is
a prior Q such that gDn (T ) = 1

nP(Dn)
for all n; the expectation

g(T ) is then given by the harmonic series
∑

n
1
n , which does not

converge to a finite value.

We will later make assumptions that guarantee that all of gD(T ), g(T ), fD(T ),
and f (T ) are well-defined and finite.

Definition B.3. A normalization method N (when used with MEC as ag-
gregation method and relative to priors P and Q) is
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i. fair with respect to probabilities (in giving equal say to all moral the-
ories with respect to P and Q) if and only if, for any two moral
theories T and T′, we have g(N (T)) = g(N (T′));

ii. self-consistently fair with respect to expected choice-worthiness (in giving
equal say to all moral theories with respect to P and Q) if and
only if, for any two moral theories T and T′, we have f (N (T)) =
f (N (T′)).

These definitions are understood to in particular require that g(N (T))
and f (N (T)), respectively, are well-defined and finite for all theories T.

Remark B.4. In our definitions of g(T ) and f (T ) we have first defined a
derivative capturing an intuitive notion from voting theory within each
decision-situation D ∈ D; then we took the expectation across decision-
situations. We could also have proceeded the other way around, as fol-
lows:

1. Define PT (p) = ED∈P [PT ,D(p)], that is, first take the expectation
of the probability that a slight perturbation will change the set of
top options.

2. Define g̃(T ) to be the derivative of PT (p) in p = 0.

It is not clear if our intuitive notion of fairness with respect to proba-
bilities is better captured by defining it in terms of g(T ) or g̃(T ). If we
define f̃ (T ) similarly, this applies mutatis mutandis to self-consistent fair-
ness with respect to expected choice-worthiness. We will therefore make
assumptions guaranteeing that g(T ) = g̃(T ) and f (T ) = f̃ (T ).

In order to say anything further about which methods might be fair
in either sense, we need to make some assumptions about the priors
P and Q . We want to assume that they are essentially ignorant, analo-
gous to the assumption for computing voting power that other people
are equally likely to vote in all possible combinatorial permutations.
But rather than assume a specified form for these priors, we will just
make assumptions about some of their properties.

Smoothness assumption (on Q): For all D ∈ D, the marginal distribution QD

on R
#D has a continuously differentiable cumulative distribution func-

tion.

Boundedness assumption (on P and Q): There is a non-negative random
variable X on D that has a finite expectation relative to P and such that
we have | PT,D(p)

p | < X (D) for all D ∈ D and p �= 0. (Note that PT ,D(p)
depends on Q .)

First ignorance assumption (on Q): Using MEC on Q for each decision-
situation results in a measure that is symmetric in options; that is, shuf-
fling the labels of options in the description of an event does not change
its probability according to any QD .
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Second ignorance assumption (on Q): For all D ∈ D, the derivative of the
cumulative distribution function of QD vanishes almost nowhere; that is,
its set of zeros has Lebesgue measure 0. (In other words, the Lebesgue
density of QD is non-zero almost everywhere.)

Third ignorance assumption (on P): According to P , the probability of a
given option appearing in a decision-situation is independent of which
other options appear there.

Note that the boundedness assumption allows us to use the dom-
inated convergence theorem to conclude that g (T ) = g̃(T ) and
f (T ) = f̃ (T ) (see Remark B.4 for notation and context).

We are now in a position to state the theorem.

Theorem B.5. Suppose that P and Q satisfy the above assumptions. Then:

1. The normalization method N is fair with respect to probabilities
if and only if N normalizes the mean absolute difference of the
choice-worthiness functions—that is,

MADP (T) :=
∑

A,B∈O
PD∼P (A ∈ D)PD∼P (B ∈ D)|N (T)D(A)−N (T)D(B)|

does not depend on the theory T; and
2. N is self-consistently fair with respect to expected choice-worthiness

if and only if N normalizes the variance of the choice-worthiness
functions—that is,

VarP (T) :=
∑

A,B∈O
PD∼P (A ∈ D)PD∼P (B ∈ D)(N (T)D(A)−N (T)D(B))

2

does not depend on the theory T.

In the proof of the theorem, we will use the following notation for
fixed T ∈ T , D ∈ D, A,B ∈ D, and p < 1.

i. PT ,D,A,B(p) denotes the probability (according to Q) that SD and
pTD + (1 − p)SD differ in their ranking of options A and B; and

ii. ET ,D,A,B(p) denotes the expected choice-worthiness (in units ac-
cording to TD) of that flip in ranking—that is, ET ,D,A,B(p) =
PT ,D,A,B(p)(TD(A)− TD(B)).

We will also use the following:

Lemma B.6. Suppose that the above assumptions are satisfied. Then, for
each decision-situation D, the derivatives gD(T ) and fD(T ) depend only
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on the event that SD and pTD + (1 − p)SD differ in their ranking of the
top and a single other option. That is,

gD(T ) = lim
p→0

1
p

∑
B∈D

PS∼Q (SD has top option B)
∑

A∈D:TD(A)>TD(B)

PT ,D,A,B(p)

fD(T ) = lim
p→0

1
p

∑
B∈D

PS∼Q (SD has top option B)
∑

A∈D:TD(A)>TD(B)

ET ,D,A,B(p)

Proof (of the Lemma). Given that we are only adding a small amount of
credence to the theory, it is unlikely that are we are able to affect the
decision at all. But it is vanishingly unlikely that we are able to affect a
choice between three or more outcomes, so it is enough to consider the
chance of moving it between each pair of outcomes (formally speaking
the chance of being able to affect it between two outcomes is O(p), and
the chance of being able to affect it between three or more outcomes is
O(p2) and thus vanishes as we take the derivative in p = 0).

Proof (of the Theorem). Let T be a moral theory; to avoid clutter, set
T = N (T). The proof will proceed by showing that g(T ) and f (T ) are
proportional to the mean absolute difference and variance of T , respec-
tively. We will only give a full proof of the first statement; a proof of the
second statement can then be obtained by multiplying in every step by
TD(A)− TD(B).

Step 1: We calculate PT ,D,A,B(p) and its derivative in p = 0.

Two choice-worthiness functions SD and S ′
D rank A and B differently

if and only if SD(A) − SD(B) and S ′
D(A) − S ′

D(B) have different signs.
Therefore,

PT ,D,A,B(p)

= PS∼Q

(
(SD(A)− SD(B))

(
(1− p)(SD(A)− SD(B)+ p(TD(A)−TD(B))

)
< 0

)

= PS∼Q

(
p

p − 1
(TD(A)−TD(B)) < SD(A)− SD(B) < 0

)
,

where for the second equality we have without loss of generality assumed
that TD(A) > TD(B). (Note that PT ,D,A,B(p) = 0 if TD(A) = TD(B).)

The smoothness assumption implies that SD(A)−SD(B) is a real-valued
random variable (where S is distributed according to Q) with a Lebesgue
density and a continuously differentiable cumulative distribution func-
tion FD,A,B . We thus have:

PT ,D,A,B(p) = FD,A,B(0)− FD,A,B

(
p

p − 1
(TD(A)− TD(B))

)
.

By the chain rule, since FD,A,B is differentiable in p
p−1 (TD(A) − TD(B)),

we can calculate the derivative in p as

P ′
T ,D,A,B(p) = F ′

D,A,B

(
p

p − 1
(TD(A)− TD(B))

)
1

(p − 1)2 (TD(A)− TD(B)) .
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In particular, for p = 0 we get

(3) P ′
T ,D,A,B(0) = F ′

D,A,B(0)(TD(A)− TD(B)) .

Step 2: We calculate gD(T ) for fixed D.

By the first ignorance assumption, the cumulative distribution func-
tion FD,A,B introduced in the first step depends only on the number of
options #D in D, and in particular is independent of A and B—going
forward, we will denote it by F#D . Using this notation, Lemma B.6 and
the first step imply that

gD(T ) = lim
p→0

1
p

∑
B∈D

PS∼Q (SD has top option B)
∑

A∈D:TD(A)>TD(B)

PT ,D,A,B(p)

=
1

#D

∑
A,B∈D:TD(A)>TD(B)

P ′
T ,D,A,B(0)

=
F ′
#D(0)
2#D

∑
A,B∈D

|TD(A)− TD(B)| .

Step 3: We take the expectation over decision-situations D ∈ D according to P
to obtain g(T ) from the gD(T ).

By the second step and the ignorance assumptions, we have

g(T ) = ED∼P [gD(T )]

=
∑
D∈D

P(D)gD(T ) =
∑
D∈D

P(D)
F ′
#D(0)
2#D

∑
A,B∈D

|TD(A)− TD(B)|

=
1
2

∞∑
n=2

F ′
n(0)
n

∑
D∈D:#D=n

P(D)
∑

A,B∈D

|TD(A)− TD(B)|

=
1
2

∑
A,B∈O

∞∑
n=2

PD∼P (#D = n)
F ′

n(0)
n

PD∼P (A ∈ D)PD∼P (B ∈ D)|TD(A)− TD(B)|.

Now consider k :=
∑∞

n=2 PD∼P (#D = n) F ′
n (0)
n , which does not de-

pend on any of T ,D,A,B. The boundedness assumption implies that
k is finite, for else we could express PT ,D(p) in terms of the proba-
bilities PT ,D,A,B(p) calculated in step 1 and use equation (3) to derive
that | PT,D(p)

p | has infinite expectation across decision-situations D. Also,
k �= 0 by the second ignorance assumption. We thus have seen that
g(T ) = k

2 MADP (T ) is proportional to MADP (T ), as desired.
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appendix c. narrow statistical normalization methods make
cyclical recommendations across choice situations

Proposition C.1. There is a decision-maker with fixed credences in fixed
moral theories, so that applying any narrow statistical normalization
method will result in cyclical recommendations of options over one an-
other, in varying choice-situations.

Proof. The proof is straightforward, based on the fact that when there
are only two options in a choice situation, all narrow statistical normal-
ization methods must make the same recommendation. Let A,B, and
C be options, and consider three moral theories with choice-worthiness
across these options as indicated by R, S, and T in Table 2.

R S T

A 0 2 1

B 1 0 2

C 2 1 0

Table 2. Choice-worthiness functions generating cyclic preferences.

Suppose the decision-maker has credence 0.4 in R and 0.3 in each of
S and T , and that she faces a choice between A and B only. All that a
narrow and statistical normalization method can see of each theory is
whether it prefers A or B, and it must treat each of these in the same
way. Since it is a normalization method, they are all normalized to the
same thing—without loss of generality, the preferred option at 1 and the
less preferred option at 0. Then the expected choice-worthiness of A is
0.4 · 0 + 0.3 · 1 + 0.3 · 0 = 0.3. The expected choice-worthiness of B is
0.4·1+0.3·0+0.3·1 = 0.7. In effect the procedure has reduced to asking
whether there is more credence on theories preferring A or B. In this
case credence 0.7 lay with theories preferring B, so the decision-maker
will choose B over A.

Suppose now that the decision-maker faces instead a decision between
B and C . Again the theories will all be normalized, so we need know only
the total credences preferring each option. Now R and S (with total
credence 0.7) prefer C to B, so the decision-maker will choose C over B.

Finally suppose the decision-maker faces a decision between C and A.
Here R prefers C to A, but the other two theories prefer A to C . Since
there is credence 0.6 in these theories the decision-maker will choose A
over C .
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