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We present a new method for expressing Chaitin’s random real, €2,
through Diophantine equations. Where Chaitin’s method causes a par-
ticular quantity to express the bits of 2 by fluctuating between finite
and infinite values, in our method this quantity is always finite and the
bits of ) are expressed in its fluctuations between odd and even values,
allowing for some interesting developments. We then use exponential
Diophantine equations to simplify this result and finally show how both
methods can also be used to create polynomials which express the bits
of  in the number of positive values they assume.

10.1. Recursive Enumerability, Algorithmic Randomness
and Q

One of the most startling recent developments in the theory of computation
is the discovery of the number €2, through the subfield of algorithmic infor-
mation theory. € is a real number between 0 and 1 which was introduced
by G. J. Chaitin [2] as an example of a number with two conflicting prop-
erties: it is both recursively enumerable and algorithmically random. Very
roughly, this means that € has a simple definition and can be computed in
the limit from below, yet we can determine only finitely many of its digits
with certainty—for the rest we can do no better than random.

Understanding the full importance of these properties requires some fa-
miliarity with the recursive functions—commonly presented through mod-
els of computation such as Turing machines or the lambda calculus. For
the purposes of algorithmic information theory, however, it is convenient to
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abstract some of the details from these models and consider a programming
language in which the (partial) recursive functions are represented by finite
binary strings.! These strings are just programs for a universal Turing ma-
chine (or universal lambda expression) and they take input in the form of
a binary string then output another binary string or diverge (fail to halt).
For convenience, we will often consider these inputs and outputs to encode
tuples of positive integers.

On top of this simplified picture of computation, we impose one re-
striction which is necessary for the development of algorithmic information
theory (and hence €2). The set of strings that encode the recursive functions
must be prefix-free. This means that no program can be an extension of
another, and thus each program is said to be self-delimiting. As algorithmic
information theory is intricately linked with communication as well as com-
putation, this is quite a natural constraint—if you wish to use a permanent
binary communication channel, then you need to know when the end of a
message has been reached and this cannot be done if some messages are
extensions of others.

There are many prefix-free sets that one could choose and many recur-
sive mappings between these and the recursive functions. These different
choices of ‘programming language’ lead to different values of €2, but this
does not matter much as almost all of its significant properties will remain
the same regardless. However, to allow talk of € as a specific real number
we will use the same language as Chaitin [3].

Now that we have explained what we mean by a programming language,
we can give a quick overview of computability in terms of programs. A pro-
gram computes a set of n-tuples if, when provided with input (z1,...,z,),
it returns 1 if this is a member of the set and 0 otherwise. A program
computes an infinite sequence if, when provided with input n, it returns
the value of the n-th element in the sequence. A program computes a real,
r, if it computes a sequence of rationals {r,} which converges to r and
Ir —rn| < 2% These sets, sequences and reals that are computed by pro-
grams are said to be recursive.

There are also many sets, sequences and reals that cannot be computed,
but can be approximated in an important way. A program semi-computes a
set of n-tuples if, when provided with input (z1,...,z,), it returns 1 if this
is a member of the set and diverges otherwise. A program semi-computes

LFor more details see Chaitin [3].
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an infinite sequence of bits if, when provided with input n, it returns 1 if
the n-th bit in the sequence is 1 and diverges otherwise. A program semi-
computes a real, r, if, when provided with input n, it computes a rational
number, r,, where {r,} converges to r from below. These sets, infinite
bitstrings and reals that are semi-computed by programs are said to be
recursively enumerable or r.e.

There is an important point that needs to be made concerning reals
and their representations. Each real number between 0 and 1 has a binary
expansion: a binary point followed by an infinite sequence of bits that rep-
resents the real.? Throughout this paper, we shall be making considerable
use of the binary expansions of real numbers so it is important to point out
an oddity in the definitions above: a real is recursive if and only if its binary
expansion is recursive, but a real may be r.e. even if its binary expansion is
not r.e. We shall thus take care to distinguish the weaker property of being
an r.e. real from the stronger one of being a real whose binary expansion is
r.€.

An example of a real that is r.e. but not recursive is 7: the real number
between 0 and 1, whose k-th digit is 1 if the k-th program (in the usual
lexical ordering of finite bitstrings) halts when given the empty string as
input and 0 if the k-th program diverges. Equivalently:

T= Y 2" (10.1)

pr, halts

7 is an r.e. real because there is a computable sequence of rationals {7;},
where

T = Yo o2 (10.2)
n<i
pr halts in <i steps

such that {7;} converges to 7 from below.

Furthermore, it is clear that the binary representation of 7 is also r.e. be-
cause there is a program that simulates the k-th program, halting if and
only if it does. This program is a slightly modified universal program that
first determines the bits of the k-th program and then simulates it.

2For numbers that can be expressed with a representation ending in an infinite string
of 0’s, there is another representation ending in an infinite sequence of 1’s, but we shall
remove this ambiguity by only using representations with an infinite number of 0’s. This
will not affect the important reals in this paper, 2 and 7, as they are irrational and thus
have unique representations regardless.
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T is not recursive, however, because if a program could compute it to
arbitrary accuracy, it would determine whether each program halts or not
when given the empty string as input. This is known as the blank tape
problem and is easily shown to be equivalent to the more general halting
problem—‘does a given program halt on a given input?’. The halting prob-
lem is fundamental to the theory of computation and is the most famous
problem that cannot be recursively solved. 7 merely encodes the informa-
tion necessary to solve the halting problem into the binary expansion of a
real number and thus provides a very simple example of a non-computable
real to which we can contrast the more exotic properties possessed by (2.

Q encodes the halting problem in a more subtle way: it is the halting
probability. We could, theoretically, generate a random program one bit
at a time, by flipping a fair coin and writing down a 1 when it comes up
heads and a 0 for tails—stopping if we reach a valid program. The chance
of generating any given n bit program is therefore % Q is the chance that
this method of random program construction generates a program that

halts. Letting |p| represent the size of p in bits, we can also express () as

Q=Y 27 (10.3)
p halts

As was the case for 7, there is a computable sequence of rationals {{2;},
where

Q; = > ol (10.4)
Ip|<i
p halts in <i steps
which converges to €2 from below, showing it to be an r.e. real. However,
we shall see shortly that the binary representation of 2 is not r.e.

A real is said to be algorithmically random [3] if and only if the ‘al-
gorithmic complexity’ of each m-bit initial segment of its binary expansion
becomes and remains arbitrarily greater than n.3 In other words a real,
r, is algorithmically random if and only if any program that has access to
outside advice in the form of binary messages requires more than n bits of
advice to compute the first n bits of 7’s binary expansion (for all values of n
above some threshold).* Thus a random real is one for which only finitely

3This is only one of four common definitions of algorithmic randomness, however, all
have been shown to be equivalent.

4The reason that slightly more than n bits of advice are needed is because in algorith-
mic information theory the advice comes in self-delimiting messages (which are actually
programs that generate the advice—Ilike self-extracting archives) and in order to be self-
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many prefixes of its binary expansion can be compressed.

It is easy to see that a random real cannot have an r.e. binary expan-
sion. Let x be an arbitrary real whose binary expansion is r.e. By definition,
there must be a program, p,, that takes a positive integer, k, and halts if
and only if the k-th bit of x is 1. To determine n bits of x, we just need
to know how many of these n values of £ make p, halt. We could then
simply run p, on all the values of k and stop when this many have halted,
knowing that no more will halt and thus determining the n bits of . Since
all positive integers less than n can be encoded in logn bits (rounding up),
we only need to send a message of about (logn + loglogn) bits. In this
manner, any prefix of x can be significantly compressed, so x cannot be
random.

Because of this, we can see that 7 too is not random. However,
Chaitin [3] has proven that Q is random and so cannot be compressed
in this manner.®? For sufficiently high values of n, n bits of £ provide n bits
of algorithmically incompressible information.

In addition to recursive incompressibility, random reals are also char-
acterised by recursive unpredictability [3]. Consider a ‘predictive’ program
that takes a finite initial segment of an infinite bitstring and returns a value
indicating either ‘the next bit is 1’, ‘the next bit is 0’ or ‘no prediction’.
If any such program is run on all finite prefixes of the binary expansion
of a random real and makes an infinite amount of predictions, the limiting
relative frequency of correct predictions approaches % In other words when
any program is used to predict infinitely many bits of a random real, such
as €2, it does no better than random—even with information about all the
prior bits.

The power of this unpredictability can be seen when compare the pre-
dictability of 7. In this case, the predictive program can easily predict an
infinite amount of bits with no errors. This is because infinitely many bits
of 7 are ’easy’ to compute. For example, consider the halting behaviour of
Turing machines: there are infinitely many Turing machines which have no
loops in their transition graphs and thus cannot possibly diverge. When
the predictive program is asked to predict the n-th bit of 7, it can just

delimiting, these messages need slightly more bits than they would otherwise. In general,
an n bit string requires about (n + logn) bits. Chaitin [3] provides further details.
5Indeed, it has since been shown through the work of R. Solovay, C. S. Calude,
P. Hertling, B. Khoussainov, Y. Wang and T. A. Slaman that the only r.e. random
reals are s for different programming languages. See Calude [1] for more details.
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check to see if the n-th program corresponds to such a machine, returning
‘the next bit is 1’ if it does and ‘no prediction’ otherwise.%

With its inherent incompressibility and unpredictability, {2 really does
go beyond the type of uncomputability present in a more typical non-
recursive real such as 7. However, its contrasting property of being an
r.e. real makes ) seem to be just beyond our reach. In the next section, we
will introduce Diophantine equations and show how these can be used to
bring uncomputability into the more classical field of number theory. Then,
in Section 10.3, we will show two ways of using Diophantine equations to
bring 2 and randomness to number theory—Chaitin’s original method and
our new technique.

10.2. Diophantine Equations and Hilbert’s Tenth Problem

A Diophantine equation is a polynomial equation in which all of the co-
efficients and variables take only positive integer values. Many natural
phenomena with discrete quantities are modelled well by Diophantine equa-
tions and they occur frequently in number theory. It is often convenient to
express a Diophantine equation with all terms on the left hand side:

D(zy,...,2m) =0 (10.5)

Here D is a polynomial of z1, ..., z,, in which the coefficients can take both
positive and negative integer values.

The number of solutions for a Diophantine equation varies widely. For
example, 3x1; + 6 = 0 has one solution, while 125 — 2 = 0 has two and
x122 — xo = 0 has infinitely many. Some however, such as 2 — 3x; = 0,
have no solutions at all. There are many different methods for deciding
whether Diophantine equations of certain forms have solutions and deter-
mining what these solutions are, but there has been a great desire for a
single method that takes an arbitrary Diophantine equation and determines
whether or not it has solutions. In 1900, David Hilbert [6] gave the prob-
lem of finding such a method as the tenth in his famous list of important
problems to be addressed by mathematicians in the 20th Century. Since
then, the task of finding this method has become known simply as Hilbert’s
Tenth Problem.

6From the definition of binary programs in algorithmic information theory, there must
be a recursive mapping between programs and Turing machines (or any such model).
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Another area of research concerns families of Diophantine equations. A
family of Diophantine equations is a relation of the form:

D(ay,...,an,21,...,Zm) =0 (10.6)

in which we distinguish between two types of variable. The variables
T1,...,T, are called unknowns, while ay,...,a, and called parameters.
By assigning values to each of the parameters (and treating them as con-
stants), we pick out an individual Diophantine equation from the family.
For example, the family a; —3xz; = 0 consists of the equations: 1 —3z; = 0,
2—3x; =0,3—3x; =0 and so on.

Each family of Diophantine equations is naturally associated with a
certain set of n-tuples of positive integers, ©, in the following manner:

(a1,...,ap) €D <= dz1...25D(a1,...,an,21,...,2,m) =0 (10.7)

In other words, a tuple is in the set if the equation it corresponds to has
a solution. Such sets are said to be Diophantine or to have a Diophantine
representation. For example, the set of all multiples of 3 is Diophantine
because it is represented by the family a; — 3z; = 0.

Over the 1950’s and 1960’s, M. Davis, H. Putnam and J. Robinson es-
tablished several important results regarding which sets are Diophantine.
Their key result concerned a characterisation, not of Diophantine sets, but
their close relation: ezponential Diophantine sets.

A family of exponential Diophantine equations is a relation of the form:
D(ay,...,Gn, @1, .., Ty, 27 ...,277) =0 (10.8)

where D is once again a polynomial, but now some of its variables are ex-
ponential functions of others. Davis, Putnam and Robinson [5] used this
additional flexibility to show that all r.e. sets are exponential Diophantine.
It had long been known that all exponential (and standard) Diophantine
sets are r.e. because it is trivial to write a program that searches for a so-
lution to a given equation and halts if and only if it finds one. Therefore,
the new result meant that the exponential Diophantine sets were precisely
the r.e. sets.

In 1970, Yu. Matiyasevich [7] completed the final step, proving that all
exponential Diophantine sets are also Diophantine and thus that the Dio-
phantine sets are exactly the r.e. sets—a result now known as the DPRM
Theorem.
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The pDPRM Theorem provides an intimate link between Diophantine
equations and computability, reducing the task of determining whether a
set has a Diophantine representation to a matter of programming. For in-
stance, there is a program that takes a single input k£ and halts if and only
if the k-th bit of 7 is 1. Thus, the set of positive integers that includes
k if and only if the k-th program halts is an r.e. set and via the DPRM
Theorem, there is a family of Diophantine equations with a parameter k,
that has solutions if and only if the k-th program halts.

This family of equations provides an example of uncomputability in
number theory and shows that Hilbert’s Tenth Problem must be recursively
undecidable because a program that finds whether arbitrary Diophantine
equations have solutions could be used to determine the bits of 7 and thus
to solve the halting problem. Indeed, it was long known that the recursive
undecidability of Hilbert’s Tenth Problem would follow immediately from
the DPRM Theorem and this was the main motivation for its proof—the
Diophantine representations for all other r.e. sets being largely a bonus.

10.3. Expressing Omega Through Diophantine Equations

While the DPRM Theorem demonstrates the existence of 7 and uncom-
putability in number theory, it also denies the possibility of finding a simi-
lar family of Diophantine equations expressing €2 and randomness. This is
due to the fact discussed in Section 10.1 that, while 2 is an r.e. real, its
sequence of bits is not r.e. However, the DPRM Theorem only prohibits a
direct Diophantine representation of 2 and says nothing about the more
subtle properties of Diophantine equations in which these bits could per-
haps be encoded.

Chaitin [3] takes such an approach. While there is no program of one
variable, k, that halts if and only if the k-th bit of € is 1, Chaitin provides a
program, P, that takes two variables, k and N, and computes €2 somewhat
less directly. For a given value of k, P can be thought of as making an
infinite series of ‘guesses’ as to the value of the k-th bit of Q—when P is
run on k and N, it gives the N-th guess as to the k-th bit of 2. What is
impressive is that P gets infinitely many of these guesses right and only
finitely many wrong.

How does P do this? It simply computes the sequence {£2;} discussed
in Section 10.1 until it gets to Qx and then returns the k-th bit of Q.
Just as {Q;} forms a sequence of approximations to 2, so the k-th bit of
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each {€;} forms a sequence of approximations to the k-th bit of €.

Consider this k-th bit of each {£;} as i is increased. This bit could
change between 0 and 1 many times, but since {€;} approaches 2, it must
eventually remain fixed, at which point it must have the same value as the
k-th bit of Q. Therefore, if the k-th bit of Q is 1, the k-th bit of {£;} must
be 0 for only finitely many values of ¢, and so P must return 0 for finitely
many values of N and 1 for infinitely many. On the other hand, if the k-th
bit of © is 0, then the k-th bit of {€2;} must be 1 for only a finite number
of values of ¢ and P must return 1 for finitely many values of N and 0 for
infinitely many. Either way, as IV increases, the output of P applied to k
and N limits to the k-th bit of €.

It may seem as though this program is computing the bits of 2 but this
is not quite the case. P just computes the N-th ‘guess’ of the k-th bit. From
the infinite sequence of such guesses, the k-th bit could be determined but
P does not and cannot put the guesses together like that—it just returns
one of them.

Since recursive functions are just a special type of r.e. function, we can
apply the DPRM Theorem and see that there must be a family of Diophan-
tine equations

x1(k,N,z1,...,2m) =0 (10.9)

that has solutions for given values of k and N if and only if P returns 1
when provided with these as input. For a given value of k, there are solu-
tions for infinitely many values of N if and only if the k-th bit of 2 is 1.

Thus, by using a more subtle property of the family of Diophantine
equations, Chaitin was able to show that algorithmic randomness occurs
in number theory: as k is varied, there is simply no recursive pattern to
whether this family of equations has solutions for finitely or infinitely many
values of N.

By modifying Chaitin’s method slightly, we can find a new way of ex-
pressing the bits of € through a family of Diophantine equations. We will
present this method informally here, with complete details being found
in [9] (see also [4]). Our result has now been extended by Matiyasevich [8].

Consider a new program, (), that also takes inputs k and N, and begins
to compute the sequence {2;}. For each value of €;, @ checks to see if it is
greater than 2%, halting if this is so, and continuing through the sequence

otherwise. Since {€);} approaches Q from below, we can see that ; > Qﬂk
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implies that Q > 2% and conversely, if @ > 2% there must be some value
of 7 such that Q; > Zﬂk Therefore, @ will halt on & and N if and only
if Q > 2% Alternatively, we could say that @ recursively enumerates the
pairs (k, N) such that © > 2.

Just as we could determine the k-th bit of €2 from the number of values
of N that make P return 1, so we can determine it from the number of
values of N for which @ halts. In what follows, we shall refer to these
quantities as as py and g respectively.

Unlike pg, gx is always finite. Indeed, an upper bound is easily found.
Since 2 < 1, only values of k and N such that 2% < 1 can possibly be less
than Q and thus make @ halt. Since both k and N take only values from
the positive integers we also know that zﬂk > 0 and thus for a given k, there
are less than 2% values of N for which @ halts and ¢, € {0,1,...,2% —1}.

From the value of g, it is quite easy to derive the first k bits of (.
Firstly, note that g is equal to the largest value of N such that % < OQ—
unless there is no such IV, in which case it equals 0. Either way, its value can
be used to provide a very tight bound on the value of Q: Zx < Q < qg—j{l.
Since 2 is irrational, we can strengthen this to Zr < Q < q’;{l, which

means that the first & bits of Z¢ are exactly the first k bits of Q.

This gives some nice results connecting g and 2. The first k bits of 2
are just the bits of g, when written with enough leading zeros to make k
digits in total. Thus g, when written in this manner, provides the first &k
bits of 2. Additionally, we can see that g is odd if and only if the k-th bit
of Qis 1.

Now that we know the power and flexibility of g, it is a simple matter
to follow Chaitin in bringing these results to number theory. The function
computed by @ is r.e. so, by the DPRM Theorem, there must be a family of
Diophantine equations

x2(k, N, 21, ..., 2m) =0 (10.10)

that has a solution for specified values of k£ and NN if and only if @) halts
when given these values as inputs. Therefore, for a particular value of k,
this equation only has solutions for values of N between 0 and 2¥ — 1 with
the number of solutions, g, being odd if and only if the k-th bit of € is 1.

This new family of Diophantine equations improves upon the original
one in a couple of ways. Whereas the first method expressed the bits of €2
in the fluctuations between a finite and infinite amount of values of N that
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give solutions, the second keeps this value finite and bounded, with the bits
of 2 expressed through the more mundane property of parity. It is the fact
that this quantity is always finite that leads to many of the new features
of this family of Diophantine equations. pj is infinite when the k-th bit of
Q is 1 and, since there is only one way in which it can be infinite, it can
provide no more than this one bit of information. On the other hand, g
can be odd (or even) in 2°~1 ways, which is enough to give k — 1 additional
bits of information, allowing the first k bits of 2 to be determined.

The fact that ¢ is always finite also provides a direct reduction of the
problem of determining the bits of €2 to Hilbert’s Tenth Problem. To find
the first k bits of 2, one need only determine for how many values of N
the new family of Diophantine equations has solutions. Since we know that
there can be no solutions for values of N greater than or equal to 2¥, we
could determine the first k bits of Q from the solutions to 2* instances
of Hilbert’s Tenth Problem. In fact, we can lower this number by taking
advantage of the fact that if there is a solution for a given value of N then
there are solutions for all lower values. All we need is to find the highest
value of N for which there is a solution and we can do this with a bisection
search, requiring the solution of only k instances of Hilbert’s Tenth Prob-
lem.

Finally, the fact that ¢, is always finite allows the generalisation of these
results from binary to any other base, b. If we replace all above references
to 2F with b* we get a new program, Qj, with its associated family of Dio-
phantine equations. For this family, the value of ¢, now gives us the first &k
digits of the base b expansion of : it is simply the base b representation of
qr with enough leading zeroes to give k digits. The value of the k-th digit
of Q is simply g mod b.

Chaitin [3] did not stop with his Diophantine representation of €, but
instead moved to exponential Diophantine equations where his result could
be presented more clearly. He made this move to take advantage of the
theorem that all r.e. sets have singlefold exponential Diophantine represen-
tations, where a representation is singlefold if each equation in the family
has at most one solution.

We can denote the singlefold family of exponential Diophantine equa-
tions for the program P by

X;(ky N, 21, .. @y, 2%, ...,2°) =0 (10.11)

For a given k, this equation will have exactly one solution for each of in-
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finitely many values of IV if the k-th bit of € is 1 and exactly one solution
for each of finitely many values of N if the k-th bit of Q2 is 0. We can make
use of this to express the bits of {2 through a more intuitive property.

If we treat N in this equation as an unknown instead of a parameter,
we get a new (very similar) family of exponential Diophantine equations
with only one parameter

X§(kyxo, T1,y ooy T, 271, ...,27) =0 (10.12)

Since the previous family was singlefold and N has become another un-
known, there will be exactly one solution to this single parameter family
for each value of N that gave a solution to the double parameter family.
Thus, (10.12) has infinitely many solutions if and only if the k-th bit of 2
is 1.

This same approach can be used with our method [9]. There is a two-
parameter singlefold family of exponential Diophantine equations for @) and
this can be converted to a single parameter family of exponential Diophan-
tine equations

X5k, 20, X1, .oy Ty, 271, .., 2m) =0 (10.13)

with between 0 and 2* — 1 solutions, the quantity being odd if and only if
the k-th bit of Q is 1.

Finally, we have also shown [9] that both Chaitin’s finitude-based
method and our parity-based method can be used to generate polynomials
for 2. For a given family of Diophantine equations with two parameters,

D(k,N,x1,...,23m) =0 (10.14)
we can construct a polynomial, W, where
W(k,xo,x1,...,Zm) = To (1 — (D(k,zo,x1,. .. ,J:m))2) ) (10.15)

Note that the parameter, N, is again treated as an unknown and thus de-
noted xg.

If we restrict the values of the variables to positive integers then, for a
given k, this polynomial takes on exactly the set of all values of N for which
(10.14) has solutions. We can thus use this method on x; =0 and x2 =0,
generating polynomials that express py and ¢; in the number of distinct
positive integer values they take on for different values of k. We therefore
have a polynomial whose number of distinct positive integer values fluctu-
ates from odd to even and back in an algorithmically random manner as a
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parameter k is increased.
Our result has now been further extended by Matiyasevich [8].

There are thus many ways in which algorithmic randomness is mani-
fested in number theory. While finding whether solutions exists for cer-
tain equations is undecidable, finding the quantity of solutions or even just
whether this is finite or infinite, odd or even, is much harder. In the long
run, even the best computer program can do no better than chance.
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